skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dehghani, Hossein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivated by recent experimental demonstrations of Floquet topological insulators, there have been several theoretical proposals for using structured light, either spatial or spectral, to create other properties such as flat bands and vortex states. In particular, the generation of vortex states in a massive Dirac fermion insulator irradiated by light carrying nonzero orbital angular momentum (OAM) has been proposed. Here, we evaluate the orbital magnetization and optical conductivity as physical observables for such a system. We show that the OAM of light induces nonzero orbital magnetization and current density. The orbital magnetization density increases linearly as a function of the OAM degree. In certain regimes, we find that orbital magnetization density is independent of the system size, width, and Rabi frequency of light. It is shown that the orbital magnetization arising from our Floquet theory is large and can be probed by magnetometry measurements. Furthermore, we study the optical conductivity for various types of electron transitions between different states such as vortex, edge, and bulk that are present in the system. Based on the peaks in conductance, a scheme for the detection of vortex states is proposed. 
    more » « less
  2. Abstract Open quantum systems have been shown to host a plethora of exotic dynamical phases. Measurement-induced entanglement phase transitions in monitored quantum systems are a striking example of this phenomena. However, naive realizations of such phase transitions requires an exponential number of repetitions of the experiment which is practically unfeasible on large systems. Recently, it has been proposed that these phase transitions can be probed locally via entangling reference qubits and studying their purification dynamics. In this work, we leverage modern machine learning tools to devise a neural network decoder to determine the state of the reference qubits conditioned on the measurement outcomes. We show that the entanglement phase transition manifests itself as a stark change in the learnability of the decoder function. We study the complexity and scalability of this approach in both Clifford and Haar random circuits and discuss how it can be utilized to detect entanglement phase transitions in generic experiments. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)